
© 2007, UCSC

Logical Database Design
Normalisation

Duration : 5 hrs

Part - 1

© 2007, UCSC

Detailed Syllabus
7.1 Introduction to data normalization and normal forms

7.1.1 What is normalization, Benefits of normalization,
Normalization Rules

7.1.2 1NF, 2NF, 3NF and Higher NF.

7.2 First Normal Form
7.2.1 1NF, Why convert to 1NF, Conversion to 1NF;

7.3 Second Normal Form
7.3.1 2NF, Functional Dependence and Fully Functional

Dependence, Why convert to 2NF, Conversion to 2NF

7.4 Third Normal Form
7.4.1 3NF, Transitive Dependence, Why convert to 3NF,

Conversion to 3NF.

7.5 Normalization considerations
7.5.1 Good and bad decompositions
7.5.2 De-normalization
7.5.3 Multi-valued dependencies, Join dependencies

© 2007, UCSC

Normalization

• Normalization is a database design technique which
begins by examining the relationships (called
functional dependencies) between attributes.

• Uses a series of tests (described as normal forms) to
help identify the optimal grouping for these attributes
to ultimately identify a set of suitable relations that
supports the data requirements of the enterprise.

© 2007, UCSC

The purpose of normalization

• The purpose of normalization is to identify a suitable
set of relations that support the data requirements of
an enterprise. The characteristics of a suitable set of
relations include the following:
– The minimal number of attributes necessary to support the

data requirements of the enterprise.
– Attributes with a close logical relationship
– Minimal redundancy

© 2007, UCSC

How Normalization Supports Database Design

Data Sources

Use top down approach
Such as ER modeling

Set of well-designed
relations

Use normalization as
a validation technique

Use normalization as a
bottom-up technique to create

set of relations

Approach 1

Approach 2

ER model is mapped
to a set of relations

© 2007, UCSC

Data Redundancy and Update Anomalies

• Aim is to group attributes into relations to
minimize data redundancy.

• If this aim is achieved, the potential benefits for
the implemented database include the following:
– minimal number of update operations reducing data

inconsistencies.
– reduction in the file storage cost.

© 2007, UCSC

Data Redundancy and Update Anomalies

Employee {EmpId, Ename,BDate,Address, Dnumber}
Department {Dnumber, Dname, DmgrId}

• Emp_Dept
{EmpId, Ename,BDate,Address,Dnumber, Dname,
DmgrId}

© 2007, UCSC

Update Anomalies

• Update anomalies can be classified as insertion,
deletion or modification anomalies.

• Insertion anomalies
Can be differentiated into two types (illustrated

using Emp_Dept)
i. To insert a new employee tuple into Emp_Dept,

we must include either the attribute values for
the department that the employee works for or
nulls.

ii. It is difficult to insert a new department that has
no employees.

© 2007, UCSC

Update Anomalies

• Deletion Anomalies
– The problem of deletion anomalies is related to the

second insertion anomaly situation.

– If we delete from Emp_Dept the last employee
working for a particular department, the
information concerning that department is lost
from the database.

© 2007, UCSC

Update Anomalies

• Modification Anomalies
In Emp_Dept, if we change the value of one of
the attributes of a particular department, we
must update the tuples of all employees who
work in that department.

We can avoid these anomalies by decomposing
the original relation into the Employee and
Department relations.

© 2007, UCSC

Update Anomalies

• The process of normalization through decomposition
must confirm the existence of the following
properties :
– The lossless join or nonadditive join property -

disallows the possibility of generating spurious
tuples with respect to the relation schema created
after decomposition.

– The dependency preservation property – ensures that each
functional dependency is represented in some individual
relation resulting after decomposition.

© 2007, UCSC

Generation of Spurious Tuples

• Consider the relation
– Emp_Proj {Empid,Pnumber, Hours,Ename,

Pname,Plocation}

KandyProductZSilva203345

KandyProductYPerera72123

ColomboProductXPerera321123

PlocationPnameEnameHoursPnumberEmpid

© 2007, UCSC

Generation of Spurious Tuples
Consider the two relation schemas instead of Emp_Proj

• Emp_Locs{Ename, Plocation}
• Emp_Proj1{Empid,Pnumber,Hours,Pname,Plocation}

Emp_Proj1

KandyProductZ203345

KandyProductY72123

ColomboProductX321123
PlocationPnameHoursPnumberEmpid

KandySilva

KandyPerera

ColomboPerera
PlocationEnameEmp_LocsEmp_Locs

© 2007, UCSC

Generation of Spurious Tuples

KandyProductZSilva203345

KandyProductZPerera203345

KandyProductYPerera72123

ColomboProductXPerera321123

PlocationPnameEnameHoursPnumberEmpid

Reason ?

© 2007, UCSC

Functional Dependencies

Functional dependency describes the
relationship between attributes in a relation. For
example,
– if A and B are attributes of relation R, B is

functionally dependent on A (denoted A B)
if each value of A is associated with exactly one
value of B.

© 2007, UCSC

Functional Dependencies

• When a functional dependency exists, the
attribute or group of attributes on the left hand
side of the arrow is called the determinant.

A is the determinant of B.

A B
B is functionally

dependent on A

© 2007, UCSC

Functional Dependencies

• F – denotes the set of functional dependencies
that are specified on relation schema R.

• There are functional dependencies that are
semantically obvious.

• There are other dependencies that can be
inferred or deduced from FDs in F.

• However, it is impossible to specify all
possible functional dependencies for a given
situation.

© 2007, UCSC

Functional Dependencies

• For example if each department has one
manager, Dept_no uniquely determines
Mgr_empid ;

Dept_no Mgr_empid
Mgr_empid Mgr_phone

These two dependencies together imply that
Dept_no Mgr_phone

© 2007, UCSC

Functional Dependencies

• Formally, the set of all dependencies that include F as
well as all dependencies that can be inferred from F
called the closure of F; it is denoted by F+.

F = {Empid {Ename, Bdate, Address,
Dnumber}, Dnumber { Dname, Mgrid}}

Inferred dependencies
Empid { Dname, Mgrid}
Dnumber Dname

© 2007, UCSC

Functional Dependencies

• Let A, B, and C be subsets of the attributes of
relation R. Armstrong’s axioms are as follows:
1. Reflexivity

If B is a subset of A, then A B
2. Augmentation

If A B, then A,C Β,C
3. Transitivity

If A B and B C, then A C

© 2007, UCSC

Functional Dependencies

4. Projectivity
If A BC then A B

5. Union
If A B and A C, then A ΒC

